

Challenges and Solutions of PI Signoff for Next Generation Large Scale Chips with TSMC 7nm Process Technology

- General Overview of Sanechips
- Backgrounds and Motivations
- Solutions of New Technology Challenges
- Summary

General Overview of Sanechips

- 20+ years in IC developments Re-organized as an independent legal entity in 2003
- Leading Chip provider in industry with 1800+ employees in 8 R&D centers
- Advanced physical design capability with cutting-edge process technology
- 100+ chips in mass production, with board portfolio covering cloud, pipeline and terminals
- 3500+ patents owned including 1700+ international patents

Backgrounds and Motivations

- Design challenges on IREM
 - ✓ Evolution process technology
 - Decreasing supply voltage
 - > Demanding PVT corner coverage due to reduced PI noise margin
 - Significant self-heating effect
 - $\checkmark~$ Increasing design scale and complexity
 - Single machine needs larger memory
 - Legacy multi-threads solution cannot meet PI simulation requirements
 - More functional scenes need to be simulated
 - Vector-based PI simulation becomes more and more difficult
- Challenges in IREM signoff
 - $\checkmark\,$ Resistance,nodes and local power density are increasing
 - $\checkmark\,$ The accuracy of vector selection becomes increasingly difficult
 - $\checkmark\,$ Accuracy of power calculation becomes increasingly important
 - Highly parallel elastic computing capabilities is critical to design cycle reduction

Solutions of Vector Coverage

- Power-critical windows identification
 - ✓ FSDB longer than 750us can be analyzed quickly with profile power(100x-1000x faster than percycle power)
 - ✓ Easy to identify peak and big di/dt power windows
- Fast waveform conversion
 - ✓ Significantly reduce GATE-FSDB generation time
 - ✓ Solve the pain-point of large vector generation

	RTL	postSim	RTL2GATE
FSDB length	750us	750us	750us
run time	1h	12h	0.4h

Profile Design Activity

Conventional signal activity viewer

- Difficult to validate activity coverage
- Difficult to analyze activity per hierarchy

- Identify power-critical windows
- Qualify vectors per mode
- Identify wasted activity

Power Critical Identification

Automatic Cycle Selection on GPU Core

- RTL provides high-performance for M+ cycles
- Can identify Peak and di/dt power-critical cycles
- Can directly interface to power grid integrity tool

Power Profiling and Voltage Drop Results

- The di/dt and maxpower windows are important for PI analysis
- ProfilePower can quickly find the peak and the large di/dt windows

Solutions of Accurate Power Estimation

- Spice tools were used to calculate power of different process, voltage, temperature and frequency
- Matrix containing these power results were solved to get leakage power factor and dynamic power factor

Corner Coverage of PI Analysis

- FFG may not be the worst corner for PI analysis
 - For signalEM analysis, m40C_rcbest_ccbest is more worst than 125C_cworst_ccworst
 - ✓ For dynamic voltage drop, FFG can't completely cover other PVT corners
- Highly parallel elastic computing capability of RedHawk-SC
 - ✓ Legacy multi-threads solution cannot meet PI simulation requirements
 - ✓ With RedHawk-SC's shared design view, Multiple RC(extraction view), vcd(value change view) can exist in a single db

▲ SeaScape gp.6 – □ ×					
<u>D</u> B <u>V</u> iew <u>W</u> orkers <u>T</u> o	ols <u>H</u> elp				
1 B 🔳 🖉 🎭 🛛	📮 🥕 🕐				
View Selector					
		s 🔺			
<u> </u>	rhwk/tmp_sc/see/db				
lv					
dv					
··· lv_ssg					
ev_ssg					
···· ev_ffg					
··· vcv_didt					
···· vcv_maxP					
···· av_ssg_maxP					
···· av_ffg_maxP					
··· av_ffg_didt					
av_ssg_didt					
		1.			

	ML	LT
ML	no-violation	116.96%
LT	-	147.40%

© ZTE All rights reserved

Concurrent 2.5D-IC Simulation

- High end applications, like AI, networking and HPC require high memory bandwidth, low power and extreme performance
- It's essential to run concurrent simulation to capture coupling noise between dies and interposer, especially for highfrequency signals

Thermal-Aware Statistical EM

- With narrow 3-D fin structure and lower thermal conductivity in substrate, local temperature on FinFET device can be higher than planar MOS device, which will degrade lifetime of interconnections significantly
- BEOL(wire/via) Joule heating, FEOL(device) Couple heating

Thermal-Aware Statistical EM Flow

Thermal-Aware Statistical EM Result

- Self-heating degrade lifetime of interconnections significantly
- After considering the self-heating effect, potential EM risks can be detected

Summary

- Quick power-critical window identification is essential for vcd-based IR analysis
- Power scaling analysis across PVT corners helps power calculation for PI signoff
- More PVT corner should be covered for PI analysis at advanced process
- RedHawk-SC showed 6X speedup compared to legacy multi-thread(DMP) computing
- Thermal-Aware Statistical EM is a must for advanced process

2020

Thank you

Leading 5G Innovations