

2.5D 芯片高速接口的 SI&PI 分析方案

张江涛¹,余斌¹,庞健¹,孙拓北¹,侯忠明²,张书强²

深圳市中兴微电子技术有限公司, 5180551

安似科技 (上海) 有限公司, 200003²

[摘要] 伴随着人工智能、高性能服务器、存储、通信网络等高端应用的需求,市场对高带宽、低功耗、高性能的要求越来越突出。在面临芯片加工工艺改进越来越困难的今天,各大 Foundary 厂商的 2.5DIC 设计方案将 Moore 定律做了一个扩展,很好地契合了当前对超大数据处理的需求,同时也面临着许多需要克服的挑战,例如更加困难复杂的建模方法与参数提取、问题分析、验证及更高的 Sign-Off 标准要求。先进的工艺制程及 2.5DIC 技术的应用导致芯片设计与验证变的更加复杂,为了克服这些挑战需要一种新的信号与电源完整性分析思路与方法,ANSYS 针对 2.5DIC 封装设计流程提出了一种全新高效的 SI&PI 分析评估方案。基于 Interposer 设计的SI&PI 解决方案包括 HBM2E, Serdes 等核心 IP 的 IR-Drop、EM、信号建模、S 参数模型提取、时域眼图分析等,同时完成芯片数字 Core 电源的电源噪声、动态 IR Drop、EM 分析等,采用ANSYS 工具进行准确的建模仿真评估将有助于保证 2.5DIC 设计的质量和 Sign-Off 标准。

[关键词] HBM2E, 2.5DIC, Redhawk, Interposer, IR-Drop.

1 前言

随着 5G 商用时代的到来 AI 技术,5G 网络技术,大数据的服务器和超大规模存储的 需求越来越旺盛。这些应用技术都伴随一个共同的特点:高带宽,低功耗,高性能及高集 成度,而 2D 工艺技术已经远远不能满足上述应用需求,同时晶圆工艺的发展进入了后摩 尔时代,工艺的发展趋缓,光从晶圆工艺上来实现这些高端的应用变的越来越困难。在这 些应用背景下,2.5DIC 解决方案使得芯片工艺得以超越摩尔定律,满足上述应用需求。例 如一个系统中包括了 Logic Die,4 片 DARM,4 片 Flash,CIS,Analog,RF,MEMS 及一些 无源器件,采用传统的 2D 解决方案是把这些逻辑模块或器件平铺在硅基板上,这种集成 方式会使 DIE 的面积变得非常大,因而整个系统的面积非常庞大,实现性和成本上都变得 难以接受。但是采用 2.5D Silicon INTERPOSER 的解决方案的话可以看到其中的 Flash 和 DRAM 模块实现堆叠,并且通过 Silicon INTERPOSER 实现与 Logic Die 的信号互连通讯, 减小了整个系统的面积,集成度和可实现性也得到了提高。

目前 EDA 供应商关于的 2.5DIC 的解决方案介绍主要包括两个方面,也就是仿真工程师最关心的如何评估芯片的 PI 及 SI 性能。其中 PI 性能的评估主要包括 Chip Level 的 IR

Drop/EM 分析与 Chip-Package-System Level 的 PDN 网络噪声分析两个部分。SI 性能评估主要包括串行高速 Serdes 信号的插损/反射/串扰评估以及并行 HBM 信号的性能分析。

2 Dynamic IR 仿真系统构建

2.1 2.5DIC 设计与仿真面临的问题与挑战

区别于传统 2DIC, 2.5DIC 在系统的复杂程度上大大的增加,详细系统建模和仿真, 以及芯片 Sign-Off 方面都有更大的挑战去克服,从仿真角度下包括以下几点:

- Multiple Systems 多 DIE 系统, 2.5D 芯片系统中必定将涉及到 2 个以上的系统互连, 如何快速实现多系统的建模和仿真是其中一个难点。
- Co-Simulation: 在 2.5DIC 中涉及到 Logic Die, INTERPOSER, TSV 及封装多个结构, 单纯对其中的某一个结构进行分析已经无法得到准确评估其性能。
- 2.5DIC 的规模一般都比较庞大,用传统的仿真方法可能已经无法适用,如何准确的进行信号和电源的建模分析和参数提取,软件和硬件如何支撑也是一个难点。

因此本文基于以上困难与挑战介绍一种全新的区别于传统 SI&PI 的分析方法,来保证 2.5DIC 产品的可靠性和性能达标。

2.2 Dynamic IR 仿真数据模型互连

2.5DIC 的 Dynamic IR 仿真系统构建相对比较复杂,相比传统仅仅需要分析 DIE Level 加 PKG Level 的系统,需要考虑 INTERPOSER 的影响。如何快速高效的将 DIE Level, INTERPOSER 以及 PKG Level 这 3 个不同数据模型准确的连接起来是一个非常有挑战的工作。

针对上述提到的构建 Dynamic IR Drop 仿真系统的痛点,ANSYS-Redhawk 专门为了实现准确数据模型互联开发了 3DIC 工具,通过下图所示 UI 界面可以非常清晰方便的将 DIE CPM 模型,INTERPOSER 设计以及 PKG CPA 模型进行对应关系互联,如下图 Fig 2-1。

Fig 2-1. 3DIC 启动界面

其中 CPM 模型需要采用 Redhawk 提取的标准数据格式,该数据类型包含了 DIE Level 上面的 uBump 的坐标 Net 相关信息,直接可以导入 3DIC 小工具,不需要做任何修改即可 识别。INTERPOSER 仅需要相关设计的 DEF 与 LEF 数据即可,同时需要 INTERPOSER 设

计同事提供准确的 Micro Bump 与 C4Bump 的 PLOC 文件,具体数据格式如下图 Fig 2-2 所示。

5 470 000 0010 000 UDWD VCC

					C4_20/0	34/0.000	0013.000	UDI'ID	122
4990	ubump 18217	17912.820	9930.045	UBM VSS	C4_2871	5138.000	8819.000	UBMB	VSS
4991	ubump 18218	17912.820	9830.045	UBM VSS	C4_2872	4798.000	8819.000	UBMB	VSS
4992	ubump 18219	17912.820	9730.045	UBM VSS	C4_2873	4458.000	8819.000	UBMB	VSS
4993	ubump 18220	17912.820	9630.045	UBM VSS	C4_2874	4118.000	8819.000	UBMB	VSS
4994	ubump 18221	17912.820	9530.045	UBM VSS	C4_2875	3778.000	8819.000	UBMB	VSS
4995	ubump 18222	17912.820	9430.045	UBM VSS	C4_2876	3438.000	8819.000	UBMB	VSS
4996	ubump 18223	17912.820	9330.045	UBM VSS	C4_2877	3098.000	8819.000	UBMB	VSS
4997	ubump 18224	17912.820	9230.045	UBM VSS	C4_3012	1738.000	9444.000	UBMB	VDD
4998	ubump 18225	17912.820	9130.045	UBM VSS	C4_3013	1738.000	9784.000	UBMB	VDD
4999	ubump 18226	17912.820	9030.045	UBM VSS	C4_3014	1738.000	9274.000	UBMB	VSS
5000	ubump 18227	16562.820	31680.04	5 UBM VDD	C4_3015	1738.000	9614.000	UBMB	VSS
5001	ubump 18228	16562.820	31580.04	5 UBM VDD	C4_3016	1568.000	9274.000	UBMB	VDD
5002	ubump 18229	16562.820	31480.04	5 UBM VDD	C4_3017	1568.000	9614.000	UBMB	VDD
5003	ubump 18230	16562.820	31380.04	5 UBM VDD	C4_3018	1398.000	9104.000	UBMB	VSS
5004	ubump 18231	16562.820	31280.04	5 UBM VDD	C4_3019	1398.000	9274.000	UBMB	VSS
5005	ubump 18232	16562.820	31180.04	5 UBM VDD	C4_3020	1398.000	9614.000	UBMB	VSS
5006	ubump 18233	16562.820	31080.04	5 UBM VDD	C4_3021	1228.000	9104.000	UBMB	VDD
5007	ubump18234	16562.820	30980.045	5 UBM VDD	C4_3022	1228.000	9444.000	UBMB	VDD
	uBump	PLOC Info	rmation		C4B	ump PLC	C Inform	ation	

Fig 2-2. PLOC 数据文件格式

如下图 Fig 2-3 所示黑色为 PKG C4Bump 的坐标示意图, 红色为 INTERPOSER DEF 数据的 C4Bump 坐标示意图, 通过 3DIC 自动或者手动连接功能, 可以非常方便的将 PKG 与 INTERPOSER 各自的坐标对应起来, 然后 3DIC 会自动生成一个 SPICE 互连网表, 用于 Redhawk 工具进行 Dynamic IR 分析时调用。CPM 与 INTERPOSER 的互连也是采用类似操作。

Fig 2-3. INTERPOSER 与 PKG 互连

通过上述操作,可以实现 Chip Level 的 CPM 模型, INTERPOSER 设计的 DEF 数据以及 PKG Level 的 CPA 模型对应关系的准确连接, 然后采用 Redhawk 的 Dynamic IR 分析功能进行相应的 仿真分析工作,最后的得到 IR 分析结果如下图 Fig 2-4 所示。

Fig 2-4. Redhawk Dynamic IR 仿真结果

2.3 Dynamic IR 仿真分析

2.3.1 Core 电源 Dynamic IR 分析

准确的获取上述三种 Level 的数据模型是保证仿真准确度的关键,其中 Chip Level 的 CPM 模型需要后端同事采用 Redhawk 工具提取相应的数据模型,其模型的复杂程度可以根 据需要进行设置,可以提供 Per Pin 的 CPM 模型,Group 分组的 CPM 模型或者 Lump 的 CPM 模型,其模型复杂程度与精度依次降低。CPM 模型的准确度的一个关键数据就是准确的功耗信息,所以前期项目的评估的时候,一定要基于芯片的工作场景给你一个准确的 功耗数据用于 CPM 模型的生成。

PKG Level 的 CPA 模型也是需要采用 Redhawk 工具进行提取,其模型与数据的复杂程度也是可以根据相应的 Group 设置方式来调节,模型结构越精细越复杂,评估的结果就越接近真实的应用场景,但是限于服务器资源以及仿真效率等因素,需要前期找到一个适合项目芯片的一个配置环境。如下图 Fig 2-5、Fig 2-6 所示同一个封装设计文件,采用不同的Group 方式抽取出来的 CPA 模型的 RL 值差异很大,采用 Lump 的 Group 方式提取出来的CPA 模型 RL 值比采用 19x19 Group 数量的 CPA 数据偏理想,最终评估的 Dynamic IR 结果也是偏理想。

Fig 2-5. PKG Core 电源: Redhawk CPA R 值

Fig 2-6. PKG Core 电源: Redhawk CPA L 值

完成上述三个仿真模型数据的输入以后,就可以采用 3DIC 工具将 CPM 模型, INTERPOSER 设计及 PKG CPA 模型进行级联操作,然后采用 Redhawk 的 Dynamic IR 分析功能进行相关的仿 真分析。

如下图 Fig 2-7、Fig 2-8 所示,通过仿真结果可知 "CPM 模型+INTERPOSER"的 Dynamic IR 仿真结果最大值为 3.38mV 左右, "CPM 模型+INTERPOSER+PKG CPA 模型"的 Dynamic IR 仿真结果最大值为 9.7mV 左右,引入 PKG CPA 模型以后,整个系统的 Dynamic IR 恶化了 6.22mV

左右,因此芯片系统进行 Dynamic IR 分析考虑 PKG 的影响对整个系统评估非常重要。通过下 图 Fig 2-9 所示的 Dynamic IR 仿真结果可以非常清晰的看到 DIE 上面各个不同区域的 Dynamic IR 具体分布情况,便于后端与封装设计同事有针对性的进行优化调整。

另外,采用 Redhawk Dynamic IR 进行分析之后还能够比较快捷的查看整个 DIE 区域不同 uBump 上面的电阻值分布,如下图所示可知在 DIE 边缘的 uBump 的电阻相对中间区域明显偏 大,可以参考该数据对 INTERPOSER 设计进行优化。

Fig 2-7. Core CPM+INTERPOSER 电源的 Dynamic IR 仿真结果

Fig 2-9. Core CPM+INTERPOSER+PKG 电源的 VDD Per Pin 电阻分布图

2.3.2 HBM2E 电源 Dynamic IR 分析结果

根据上述 Core 电源仿真 Dynamic IR 的流程,利用 HBM2E 颗粒的 CPM 模型进行仿真, HBM2E 颗粒的" CPM 模型+INTERPOSER"级联后的 Dynamic IR 仿真结果为 5.3mV 左右, "CPM 模型+INTERPOSER+PKG CPA 模型"级联后的 Dynamic IR 仿真结果为 15.1mV 左右, 如下图 Fig 2-10、Fig 2-11 所示。

Fig 2-10. HBM2 颗粒 VDDQ 电源: CPM+INTERPOSER

Fig 2-11. HBM2 颗粒 VDDQ 电源: CPM+INTERPOSER+PKG

2.3.3 SERDES 电源 Dynamic IR 分析结果

下图 Fig 2-12 所示为采用 SERDES CPM 电源模型进行的 8 Lane 供电 Block 的 Dynamic IR 仿真结果,其中左边为"CPM 模型+INTERPOSER"的仿真结果,Dynamic IR 最大值为 7.4mV 左右。右图所示为"CPM 模型+INTERPOSER+PKG CPA 模型"级联后的 Dynamic IR 仿真结果,Dynamic IR 的最大值为 16.4mV 左右,恶化了 9mV 左右。同时可以看出,Dynamic IR 最大的区域就是在 INTERPOSER 设计中相对比较薄弱的地方。

	A Maltage Drop Color Map (on NJRHEL467.HWI.ZTE.COM.C ×
lane0 lane	Iane0 prop control dialog for Wire & Via (110)
Use absolute voltage drop scale	Traserab solute voltage drop scale
ane1 ettings to al IR maps	ane1 settings to al IR maps
VDD domain for absolute voltage drop scale: 0.9 • V	VDD domain for absolute voltage drop scale: 0.9 V
%: 0.000 % Hinimum Vel: 0.000 mV	Minimum %: 0.234 % Minimum Val: 2.109 mV
lane2 %: 0.740 % Maximum Vat 6.660 mV	lane2 % 1.640 % Maximum Val: 14.760 mV
2 Full reasonant full-chip voltage drop on all nets: 7.38597 mV	Maximum full-chip votage drop on all nets 16.4359 mV
law 2 with the chip votage drop or viewed nets: 7.38597 mV	Inco 2 state drop to 1.640 M to VDD 14.740 mV
	relate drea x 1.640 = % VDD 14.760 mV
	age drop < 1.406 1 % VDD 12.631 mV
All and draw of (0.193 9 400 (1.157 114	lotace drop < 0.937
	lane4 otage drop < 0.703 0 % VDD 6.326 mV
	infane drine x 0.469 WDD 1217 mV
	lane5 setage drop < 0.231 Ph to VCD (2.302 mV
	IL III writing greater than formain VCD (overshoot)
y absolute drop scale in exported colormap	Ianeo lay absolute drop scale in exported colormap
Note: The percentage scale is used for composing voltage drop color map.	Note: The percentage scale is used for composing voltage drop color map.
lone7	lane7
Undo 🗸 Apply 🥔 OK 🔘 Cancel	Undo 📝 Apply 🖉 OK 💥 Cancel
CPM+Interposer MAX: 7.39mV	CPM+Interposer+PKG MAX: 16.44mV

Fig 2-12. Serdes AVDD 供电电源 Dynamic IR 仿真结果

3 INTERPOSER 电源与信号模型提取

由于 2.5DIC 的数据规模一般都比较庞大,用传统的仿真方法可能已经无法进行相关仿 真评估。以 HBM2E 的 INTERPOSER 设计为例,一个 HBM2E 的数据信号线为 1024,同时 整个设计的 Via 孔的数量相比于传统 PKG 的 Via 数量增加了几个量级,如何准确的进行信 号和电源的建模和参数提取,软件和硬件如何支撑也是一个很大的挑战。

3.1 INTERPOSER 设计电源模型

采用 ANSYS CSM 工具进行 INTERPOSER 设计关键 IP 供电电源模块的 RLC 模型提取 非常的方便快捷,经过仿真对比其数据精度可以得到比较好的保证,CSM 工具操作界面如 下图 Fig 3-1 所示。

	Extraction Options								
	Mode Type: OR O	RC 🖲 RLC							
	Temperature: 25 degC								
	Append GSR File								
	Extraction Process								
	Single Pass Extrac	tion							
	FAO TCL File								
	 Interactive Extract 	tion							
Extraction	Extraction Parallel								
	DMP Enabled								DMP Option
	RC Reduction Options								
	Sampling Type	Linear			٥				
	Maximum Frequency	5	GHz 🕻						
	Frequency Step	250	MHz 4						
	Poles Number	3]						
	Polor Tolerance	1e-06							

Fig 3-1. CSM 信号电源 RLC 参数提取 UI

为了降低 Serdes 供电电源在不同 Lane 之间的串扰影响,供电电源在 INTERPOSER 上 各个 Lane 是单独分开供电,这就为各个 Lane 供电电源参数提取增加了更大的难度,为了 对比各个不同 Lane 对 Serdes IP 供电噪声的影响。Power Noise 仿真采用的 INTERPOSER 模型就需要单独提取每个 Lane 的 Serdes INTERPOSER 供电电源 RLC 参数模型,总共 48 Lane,采用 CSM 的 Group 功能可以比较方便的实现上述参数提取需求,对于 PCB 与 PKG 的供电电源可以采用 ANSYS SIwave 工具提取,在此不再赘述,最终 Serdes 电源噪声的时 域仿真结果如下图 Fig 3-2 所示。

对比仿真结果发现其中有两个 Lane 对应的 uBump 上 Power Noise DC IR 值相比其他结 果"异常",经过分析发现该两个 Lane 为 Serdes DIE 所处的上下边缘位置的两个 Lane, DC IR 偏小是由于上下边缘两个 Lane 的供电电源的 uBump 数量要比中间位置的供电 uBump 数量要多出两个,如下图 Fig 3-3 所示。进一步对比发现这两个 Lane 的 DC IR 也有一定差 异,进一步对比发现是由于在边缘 uBump 的连接方式上的差异导致,如下图所示"LANE TOP"边缘的 uBump 直接打孔连接到下层的 METAL2 层,"LANE BOTTOM"是通过在 UBM 层拉出一根细走线然后连接到 METAL3 层的主电源,由于 UBM 层的走线比较细导 致 R 值偏高,导致"LANE BOTTOM"的电阻比较大,因此"LANE BOTTOM"的压降比 "LANE TOP"的要大一些,后续经过优化设计调整走线将此处进行修复,具体设计差异 如下图 Fig 3-4 所以。

Fig 3-2. SERDES Power Noise of each Lane

Fig 3-3. Lane 供电电源 uBump 数量对比

Fig 3-4. TOP 与 BOTTOM Lane 供电处理方式对比

3.2 HBM 信号 S 参数模型

类似上述电源提取 RLC 参数提取流程,可以采用 Redhawk CSM 工具进行 HBM2E 的 INTERPOSER 信号电源走线 RLC 参数同时提取,PCB 与 PKG 的电源模型采用 ANSYS SIwave 工具提取,然后采用 CSM 时域仿真工具与流程进行相应的时域眼图仿真,仿真流程如下图 Fig 3-5 所示。

2020 ANSYS INNOVATION CONFERENCE

Fig 3-5. CSM 时域 HBM2E 眼图仿真 UI

HBM2E 信号时域仿真结果如下图 Fig 3-6、Fig 3-7 所示,采用 CSM 工具可以方便快捷的查看时域波形与时域眼图,同时在 CSM 工具里面集成了 HBM2E 的 SPEC,可以方便快捷的生成相应的仿真报告,便于查看仿真结果是否满足 JEDEC 要求。

Fig 3-7. HBM2E 时域眼图仿真结果

4 结论

经过上述针对 2.5DIC 的 PI&SI 相关仿真方法的介绍,采用 ANSYS Redhawk 与 CSM 工具提取 INTERPOSER 的信号电源模型,可以准确高效、方便快捷的对 2.5DIC 设计进行 详细的 PI/SI 仿真评估,为 2.5DIC 芯片的顺利 Sign-Off 提供仿真支持。

Dynamic IR 仿真分析对比结果可知,在进行芯片 Dynamic IR 仿真时需要考虑 "CPM 模型+INTERPOSER+PKG CPA 模型"进行整个芯片的系统关键供电电源的分析工作,从芯片 Logic Core 电源,HBM2E 以及 Serdes 等核心 IP 的关键供电电源的最终仿真结果来看,仅仅仿真 "CPM 模型+INTERPOSER"的分析并不能对芯片的 Dynamic IR 进行更加可靠 全面的评估,两种仿真系统结构的分析结果差异也比较大。

Redhawk CSM 工具在提取 INTERPOSER 设计信号电源 RLC 参数模型准确性方面可以 很好的满足设计要求,对 INTERPOSER 设计上的细微差异可以准确的在仿真结果上体现出 来,供 INTERPOSER 设计同事与 PI&SI 仿真同事进行优化分析。

通过 Redhawk CSM 的 HBM2E 时域眼图分析功能,可以比较高效快捷的完成 HBM2E 信号走线与电源参数提取,同时 HBM2E 数据信号时域性能仿真结果是否满足 JEDEC 要求 也能够比较方便的生成相应的仿真报告。

[参考文献]

[1] 《信号完整性分析》, Eric.Bogatin, 2005 年 04 月, 电子工业出版社.

[2] 3D Modeling and Electrical Characteristics of Through-Silicon-Via(TSV)in 3D Integrated Circuits, 2011 International Conference on Electronic Packaging Technology & High Density Packaging, Lei Liang, Min Miao.etc.

[3] 3D Si INTERPOSER Design and Electrical Performance Study, DesignCon 2013, Mandy (Ying) Ji, Ming Li.etc.

[4] Redhawk 用户手册.

